"Living Worlds"
Specification Code and Comments

[last update: 22nd February '97]
This document specifies a set of proposed extensions and enhancements to VRML 2.0 for the purpose of supporting functionality that meets the Requirements spelled out in the LivingWorlds Concepts document.

Sharability: 3 nodes

The basic achitectural strategy proposed in Living Worlds centers on a single new parent/child pair of nodes. Objects whose state and/or behavior is intended to be shared are placed in "wrapper" nodes called SharedObjects, which are administered as children of Zone nodes.

[image: image1.png]

 Zone

EXTERNPROTO Zone [

 eventIn MFNode addChildren []

 eventIn MFNode removeChildren []

 eventOut MFNode getChildren

] "urn:inet:livingworlds.com:proto/Zone"
Objects whose state and behavior are to be shared are distinguished from objects that are strictly local in a scene by making them children of a Zone node.

The Zone node is thus a grouping of SharedObject Nodes in a scene.

The addChildren and removeChildren fields are used when something in the scene adds an object to this Zone. These events are sent to the PrivateZone's addChildren and removeChildren fields. See Architecture: Adding SharedObjects to Zone for an explanation.

[image: image2.png]

[image: image3.png]

 PrivateZone

EXTERNPROTO PrivateZone [

 exposedField SFNode zone

 field SFNode MUtech NULL

 exposedField SFString whichTechnology ""

 field SFBool isVisible TRUE

 eventIn MFNode removeChildren

 exposedField MFNode children []

 eventIn MFNode addChildren

 field MFString addChildToZoneScript "urn:inet:livingworlds.com:scripts/addChildToZone"

 exposedField SFBool isActive TRUE

 exposedField SFVec3f bboxSize 1e99 1e99 1e99

 exposedField SFVec3f bboxCenter 0 0 0

 eventIn SFNode avatar

 exposedField SFVec3f avatarPosition

 exposedField SFVec3f avatarOrientation

 exposedField SFNode navigationInfo NULL

 eventIn MFString zoneCapabilities

] "urn:inet:livingworlds.com:proto/PrivateZone"
The PrivateZone is part of a Zone It contains interfaces that are only exposed to the MUtechZone.

The zone field points at the Zone it is part of.

The MUtech field is used to attach a node specific to a particular MultiUser Technology - the MUtechZone. This Node (unlike the MUtechSharedObject) is authored, i.e. present in the VRML2.0 file for the world. The isVisible field is used to control whether any of the children are shown. It will typically be turned off when Zone is merely part of the structure of the scene graph being used to indicate sharing, rather than a grouping for real world "visible" objects.

The whichTechnology field indicates which Multi-User Technology is being used, and can be used by a object to tune its behavior to a particular technology, for example an avatar running in OnLive's technology might select a head-only version with lip-synch. This field contains a URN allocated by the MUtech vendor.

removeChildren and children behave as described in "VRML2.0 Concepts - Grouping and Children Nodes". addChildren however passes the event to the script scpecified in addChildToZoneScript which checks, and possibly changes, a SharedObject before adding to the PrivateZone. See Architecture: Adding SharedObjects to Zone for an explanation.

When the isActive exposedField isTRUE (default) then the MUtech should keep this Zone updated. The bboxSize and bboxCenter fields are set at run-time by the MUtechZone to encompass all the objects in the Zone. (If a MUtech is unable to do this, then it should leave these fields as a very high number). See Architecture: What gets Shared To Who and When for more details of how this is used.

If the user's avatar is present in the set of the children of this Zone, then the avatar field points to the SharedObject node of the avatar, it should be initialized by the MUtechZone when the Zone node becomes active. (See Initialization: When a camera enters a Zone for more details) .

The avatarPosition and avatarOrientation fields should receive events giving the position of the user's avatar relative to the Zone. These are ROUTEd at run-time by the MUtechZone to the position and orientation fields of the PrivateSharedObject corresponding to the SharedObject pointed to by the avatar field (see Architecture: Initialization when a camera enters a Zone). See Architecture: Event flow for Motion for more details of how this fits in.

The navigationInfo is either empty (default) or points at a NavigationInfo node. This node can be used to set speed and avatar size. If the second element of the avatarSize field of the NavigationInfo is set to anything other than the default (1.6) then the MUtech can use this information to scale the size of avatars appropriately. The MUtech can also use the speed and visibilityInfo as information to tune various aspects. If the scene has multiple NavigationInfo nodes that don't directly correspond to Zone nodes, then use a BinderFinder node to ROUTE their boundNode fields to the navigationInfo field of the Zone node.

The zoneCapabilities field specifies a list of Zone specific scripts implementing capabilities. (See Capabilities)

[image: image5.png]

SharedObject

EXTERNPROTO SharedObject [

 eventIn SFNode publicMessages

 exposedField SFNode private NULL

 eventOut MFNode getCertificates

 field MFNode certificates NULL

 eventIn SFBool makePrivate

] "urn:inet:livingworlds.com:proto/SharedObject"

Objects are shared by giving them a SharedObject wrapper that exposes their State and behavior interfaces to the MUtech. The SharedObject and PrivateSharedObject nodes are the representation of the object or avatar on all the browsers in the same scene. This node is the public side of the object, it is what other SharedObjects in the scene have access to.

The private exposedField should be authored to refer to a PrivateSharedObject. After the SharedObject has been compiled, a MUtechSharedObject is added to the PrivateSharedObject, and the makePrivate eventIn is sent, which causes the private field to be set to NULL so that the PrivateSharedObject is hidden from other SharedObjects and the scene.

When a Message node is sent to publicMessages. The Message is routed to the message eventIn on the MessageHandler referred to in the publicMessages field of the PrivateSharedObject.

The certificates MFNode field contains an AssociativeStringArray containing a set of Certificates. Each certificate is typically a public key signed by an issuing authority. getCertificates can be used to read the value of the certificates. The semantics of Certificates are TBD, currently this is a placeholder.

[image: image6.png]

[image: image7.png]

 PrivateSharedObject

EXTERNPROTO PrivateSharedObject [

 exposedField SFBool isPilot TRUE

 exposedField SFNode muTech NULL

 exposedField SFString nickName ""

 field MFNode visualDefinition []

 exposedField SFNode selector NULL

 exposedField SFNode pilotSelector NULL

 exposedField SFNode publicMessages NULL

 exposedField SFNode privateMessages NULL

 exposedField SFNode currentState NULL

 exposedField SFVec3f position 0 0 0

 exposedField SFRotation orientation 0 0 1 0

 exposedField SFVec3f toPosition 0 0 0

 exposedField SFRotation toOrientation 0 0 1 0

 exposedField SFTime toTime 0

 exposedField SFBool isVisible TRUE

 exposedField SFBool persistentPilot FALSE

 exposedField MFString url ""

 exposedField SFBool isActive TRUE

 exposedField SFVec3f bboxSize 0 0 0

 exposedField SFVec3f bboxCenter 0 0 0

 exposedField SFBool scaleable TRUE

 exposedField SFVec3F scale 1 1 1

 exposedField SFBool updateNeighborsOnly TRUE

 exposedField SFBool receiveUpdates FALSE

 exposedField SFBool persistent TRUE

 exposedField SFBool isAvatar FALSE

 exposedField SFNode zone NULL

 exposedField SFNode sharedObject NULL

 eventIn SFBool lock

 exposedField SFBool hasLock

 eventIn SFNode lockMutex

 eventIn SFNode signAndForward

] [

 "urn:inet:livingworlds.com:proto/PrivateSharedObject"

]
The PrivateSharedObject node is the private representation of the object, and acts as an API between the rest of the object and the MUtechSharedObject.

The MUtech field is used to attach a MultiUser Technology specific node - the MUtechSharedObject. This node is never authored, but may be attached at run-time by the MultiUser technology. The MultiUser technology may also add Routes from the MUtechSharedObject to any fields of the PrivateSharedObject that are relevant to it.

The visualDefinition field points to the standard VRML2.0 Geometry and Behaviors of the SharedObject.

The zone field is pointed by the MUtechZone at the Zone that this SharedObject is a child of. The sharedObject field points at the SharedObject that this is the PrivateSharedObject for.

The isPilot field is TRUE if changes in this objects state or shared fields should be sent to other instances of this object. Objects with persistent set to TRUE remain in the scene after the client that created them disconnects. If persistentPilot is TRUE then exactly one instance should be the Pilot at any time. isAvatar will be set by the MUtech to TRUE, if and only if there is a human controlling this object. updateNeighborsOnly should be set to FALSE if the object's state needs to be available to every client in the Zone. receiveUpdate is set to TRUE if the object needs to receive updates even when the Zone is not active. For more details on these flags, and examples see Architecture: Flags

The nickName is the user-friendly name of the Avatar. This value should be shared from any instance with isPilot=TRUE to all others.

The currentState field points to an AssociativeStringArray node, this holds the current state of the Avatar, it is shared from PrivateSharedObjects with isPilot=TRUE to all of the Drones by the MUtechSharedObject node. The AssociativeStringArray pointed here should not contain tags which duplicate the name of any field of the PrivateSharedObject. See Author: Shared State for example, and details of how to use it.

The selector should point to a Selector node, which contains selection items to present to the user running this object (e.g. in form of a menu) to select behaviors. In VRML2.0 for an avatar (isAvatar=TRUE) this will be activated by a TouchSensor (added by the MUtechSharedObject) or by an External Application, for any other object (isAvatar=FALSE) the TouchSensor must be present in the object for it to be activated by clicking. In VRML3.0 we expect this menu to be queried and managed directly by the Browser. The pilotSelector, if set, should point to a Selector to be used when isPilot=TRUE.. See Architecture: Event flow for behavior for how this fits in. The selector, and pilotSelector will be initialized at run-time, see Capabilities: Initialization. Typically the isCheckBox field of the SelectorItems of the pilotSelector will be checked indicating that multiple simultaneous behaviors (e.g. "Wave" and "Dance") are possible. To share this behavior to the Drones, the script that handles this message should set a value in the currentState of the PrivateSharedObject node.

privateMessages dispatches messages that can be sent to this PrivateSharedObject, it should point to an MessageHandler node, normally the pointer to this MessageHandler is not given to any untrusted script. publicMessages dispatches messages that can be sent by any Script. See Architecture: Inter Object communication for more details.

The currentState field points to an AssociativeStringArray node, this holds the current state of the Avatar, it is shared from PrivateSharedObjects with isPilot=TRUE to all of the Drones by the MUtechSharedObject node. This is done in this slightly unusual manner because there is no other way to allow an arbitrary collection of states in a PrivateSharedObject and still allow it to be prototyped in VRML2.0. The AssociativeStringArray pointed here should not contain tags which duplicate the name of any field of the PrivateSharedObject.

If the object is a Pilot (isPilot=TRUE) then the position and orientation fields will be driven directly by a behavior, or ROUTED by the MUtechZone from the PrivateZone's avatarPosition and avatarOrientation fields. If the object is a Drone (isPilot=FALSE) then toPosition and toOrientation and toTime eventIn's will be driven by the MUtechSharedObject, and the behavior of the drone can either animate the position and orientation fields to this position or use a SmoothMover node to get the default interpolation behavior. See also Architecture Event flow for Motion.

isVisible is set to FALSE when this object should not be displayed. For an avatar, it is normally set to FALSE on the instance of the PrivateSharedObject existing on the pilot machine, so that you don't see your own avatar. It may also be used by the MUtech to hide SharedObjects which should temporarily not be drawn, for example because they are too far from the camera.

isActive, bboxSize, bboxCenter work as for Zone, there are two possible ways they get used. If the MUtech decides what to share on a per-object basis, it may use these fields as a hint on when to share the object, if the MUtech calculates what to share on a per-zone basis, then these will be accumulated by the MUtechZone when adding SharedObjects to the Zone. The bboxSize and bboxCenter work as in VRML2.0: Concepts: Bounding Boxes, except that these fields may be changed over time. Note that as in VRML2.0 in both cases the bboxSize should be set to the maximum area of effect of this SharedObject, for example a light switch might set the size to cover the area where the light shines. Note that the bboxCenter and bboxSize fields are local, i.e. they specify the Bounding Box of the object in its own co-ordinate system NOT INCLUDING any changes made by the Transform in the PROTO. Specifically this means that if the position of an object changes, its bboxCenter will not. The scaleable field defaults to TRUE, indicating that the avatar may be scaled if inappropriate to the size of the world, this can be checked by the Zone's addChildToZoneScript when deciding whether or not to add an avatar.

The url field specifies location(s) of the file containing the VRML for the object. It must start with an SharedObject node so that there can be ROUTEs from the shared state to parts of the visual definition. When an object is added to a Zone, this field is used by the MUtechSharedObject along with the other shared fields of the SharedObject in order to completely reproduce this SharedObject on another machine. In the case of objects that are permanently part of the scene, i.e. not added dynamically at run-time this field may be blank.

See Architecture: Locking for a full description of the Locking mechanisms. When an object receives a TRUE lock eventIn, it will attempt to lock the object by sending an event to the lock eventIn of the MUtechSharedObject. When the MUtechSharedObject obtains the lock, it will send an eventOut to the hasLock exposedField. This field can be used to indicate to a behavior when the object is locked. When an object is locked, no other instance of the object (on another client) may change its sharedState, or any of the shared fields of the PrivateSharedObject, should they do so, the change will not be shared until after the object is unlocked. When a FALSE lock eventIn is received, then hasLock will immediately be set to FALSE, and a FALSE event sent to the MUtechSharedObject's lock eventIn. When a lockCooperative eventIn is received, containing a pointer to a CooperativeLock, this event is passed on to the MUtechSharedObject's lockCooperative eventIn.

Any Message node sent to signAndForward will be forwarded to the signAndForward eventIn of the MUtechSharedObject. See the Architecture: Secure paths.
In summary, the fields are grouped into five categories:

	Defined in the VRML 2.0 file referred to by the url field.
	visualDefinition, selector, pilotSelector, publicMessages, privateMessages, url, bboxSize, bboxCenter, scaleable, updateNeighborsOnly, receiveUpdates, persistent, persistentPilot

	Shared at run-time from instances with ispilot=TRUE
	nickName, currentState, toPosition, toOrientation, toTime, certificates, isAvatar

	May be different between different instances
	isPilot

	Filled in by the MUtech
	MUtech, isVisible, scale

	Set by behaviors at run-time, not shared
	position, orientation, isActive

MultiUser Technology (MUtech) Nodes

Each of the following nodes should be supplied as part of a MultiUser Technology, the interfaces of each will differ, specific examples are included here only for illustration, for up-to-date specs, see the information from particular suppliers of this technology. See Architecure: MultiUser Technology Nodes for more explanation and a diagram of how these nodes relate to their non-MUtech-specific nodes.

[image: image9.png]

MUtechZone

This node is attached by the author to the mutech field of the PrivateZone node,

For example

EXTERNPROTO ParaGraphZone [field SFString clanName ""

 field SFNode my NULL]

 ["urn:inet:paragraph.com:proto/ParaGraphZone",

 "url:http://www.paragraph.com/proto/ParaGraphZone.wrl"]

DEF Z Zone {

}

DEF PZ PrivateZone {

 whichTechnology "urn:inet:paragraph.com"

 MUtech ParaGraphZone {

 field SFString clanName "castle/ballroom"

 field SFNode zone USE Z

 field SFNode privateZone USE PZ

 }

}
There are specific requirements of the MUtechZone node, especially in VRML2.0 where some functions that the Living Worlds groups hopes will go in VRML3.0 are handled in the MUtech specific nodes.

The MUtechZone node must perform the following functions

· Its initialize event handler must at LEAST hook itself up to the PrivateZone node so that it receives, or can look for, isActive events

· On first receiving an isActive event then if avatarPosition and avatarOrientation have been set, then it should determine the user's avatar (for example by offering a dialogue to enter the URL) and load the avatar (a SharedObject) into the Zone and initialize it. See Initialization.

[image: image11.png]

MUtechSharedObject

The MUtechSharedObject, provides the link between the SharedObject and the networking code. A MUtechSharedObject node is never written by an author, either of a World or an Avatar, instead the MUtechZone will create and add one to the mutech field of the SharedObject when it is loaded (see Initialization for more details).

A MUtechSharedObject may have whatever fields the MUtech supplier decides, typically it will have a SFNode pointer to the PrivateSharedObject and/or ROUTES from individual PrivateSharedObject fields such as toPosition, toOrientation and toTime, currentState, along with enough information to identify this SharedObject to the MultiUser system.

There are specific requirements of MUtechSharedObject nodes, especially for VRML2.0 where some functionality that the Living Worlds group hopes will go into VRML 3.0 is done by the MUtech specific nodes.

A MUtechSharedObject must have at least the following fields and events

MUtechSharedObject {

 eventIn SFNode messageToPilot

 eventIn SFNode messageToLocalPilot

 eventIn SFNode replyToDrone

 eventOut SFTime timeDelta

 eventIn MFNode conditionChecker

 eventIn SFNode signAndForward

 eventIn SFBool lock

 eventIn SFNode lockCooperative

}
The MUtechSharedObject has to facilitate several networking functions.

1. State sharing between instances of this object

2. Inter-Object communication.

3. Locking of the Object

4. Time synchronisation

When the SharedObject.isPilot field is TRUE, the MUtechSharedObject has to be able to detect changes made to the currentState field of its attached PrivateSharedObject and send these via the network to the corresponding Drones on other machines. It also needs to detect changes to the position and orientation fields of the PrivateSharedObject and network these. When the SharedObject.isPilot field is FALSE, the MUtechSharedObject must be able to reconstruct the SharedObject (including all of its visualDefinition) based only on the fields in the PrivateSharedObject node (especially the url and currentState fields).

See Architecture: Inter-Object Communication for details. The messageToPilot sends a message specified by a Message node over the network to be received on the privateMessages handler on a client with SharedObject.isPilot=True.

The SFNode eventIn messageToLocalPilot will pass the message defined by a Message node on to the publicMessages handler of the user's avatar (as specified in the PrivateZoneNode.avatar field).The fromAddress and toAddress fields of the Message should be left blank, and will be filled in by the MUtech.

The replyToDrone eventIn will send a message defined by a Message node back to the Drone whose message it was in reply to. Note that this may be one of your own Drones on a remote machine, or someone else's Drone on the local machine. When using the replyToDrone event, the toAddress field of the Message node should be as received in the Message node sent by the Drone, the fromAddress field of the Message node should be NULL, and the MUtech will fill it in.

The conditionChecker eventIn receives a MFNode event, the 0th element of which should be a Message, and the 1st element a Behavior node. On receiving this, the MUtechSharedObject checks the conditions specified by the Behavior node, and either dispatches the Message to the message eventIn of the script in the script field of the Behavior, or to the failedScript field.

The timeDelta event gives the difference between the client's clock and the correct time (or the MUtech's idea of real time). This value is negative if the client's clock reports a time earlier than real time. Accuracy of this event will be MUtech and network specific.

Any Message node sent to signAndForward will be signed and forwarded to the message eventIn of the publicEvents MessageHandler of the SharedObject refered to in the toAddress of the Message. See the tutorial on Secure paths.

See Architecture: Locking, for details of locking. The MUtech must provide a lock eventIn which will be passed lock events sent to the lock eventIn of the PrivateSharedObject. The MUtech should indicate by sending a TRUE event to the hasLock exposedField of its SharedObject. Note that if the MUtech is unable to lock the object immediately, then it must take care of either queuing the lock, or spinning - i.e. sending the lock repeatedly. When the MUtech receives a FALSE lock eventIn it will unlock the object, but does not need to send a FALSE event to its SharedObject'shasLock. If the lock is taken away for any reason - for instance timed out - then a FALSE event should be sent to the SharedObject's hasLock exposedField.

When a lockCooperative eventIn is received with a pointer to a CooperativeLock, the MUtech will attempt to grab a per-object lock identified by the CooperativeLock's identifier field. If it succeeds, i.e. if no other instance of the CooperativeLock is already locked, then a TRUE eventIn will be sent to the CooperativeLock's hasLock eventIn.

Building Blocks and Workarounds

Building a library of standard VRML functions

Why should VRML be different than any other tongue? What matters is the vocabulary you have to work with, and that is never defined in the language spec. You don't need to write SQRT into the language if you've got a good library ?

This document specifies new (PROTO-ed) nodes, which we'll assume the existence of for Living Worlds, their definitions should be relatively simple Java, or could be internal.

[image: image13.png]

AssociativeStringArray

EXTERNPROTO AssociativeStringArray [

 field MFString tags []

 eventOut MFString getTags

 field MFString values []

 eventOut MFString getValues

 eventIn MFString set

 eventOut MFString output

]

"urn:inet:livingworlds.com:proto/AssociativeStringArray"
The AssociativeStringArray node is used to encapsulate an arbitrary number of attributes or states. It is required because there is no way in a Proto to specify an unknown list of fields, and we want to be able to pass arbitrary state through the networking technology.

the set eventIn takes a Tag Value pair as two elements of an MFString, and sets the appropriate fields in the tags and values. If the MFString only has one String in it, then the item is removed. Note it is legal to set to "", the empty string. If the MFString has more than two elements the remainder are ignored.

an event is sent on the output eventOut whenever a set event happens, it contains a two element (or one element) MFString with the tag and value. The output is not sent if the set event results in no changes, i.e. the deletion of a non-existent element, or setting of an element to a value it already has.

Typically the "output" event is routed to a converter such as a ASAToSFColor.

The tags and the values fields contain the attribute tags and values at initialization. getTags and getValues eventOut's may be read by something needing to process the entire array, for example a MUtechSharedObject that must transfer the state across the network.

See Author: Sharing State for an example of how to use this.

[image: image14.png]

Behavior

EXTERNPROTO Behavior [

 exposedField MFNode conditions []

 exposedField SFNode script NULL

 exposedField failedScript NULL

] "urn:inet:livingworlds.com:proto/Behavior"
See Author: Behavior for how the Behavior node is used in conjunction with the MessageHandler condition checkers, and MUtechSharedObject.

The conditions field specifies a set of condition checking nodes (e.g. CheckCertificate or CheckServer. If these conditions are passed, then the Message passed along with this Behavior node to the MUtechSharedObject will be sent to the Message eventIn of the Script in the script field. If the conditions are not passed, then the Message will be sent to the Script in failedScript instead.

See the Architecture: Condition Checking for more information on how this works.

[image: image17.png]

BinderFinder

EXTERNPROTO BinderFinder [

 field SFNode node

 eventIn SFString isBound

 eventOut SFNode nodeBound

] "urn:inet:livingworlds.com:proto/BinderFinder"
The BinderFinder node is used to work around a VRML 2.0 limitation that provides no mechanism for determining which of a bindable node (Viewpoint, NavigationInfo etc.) is currently bound. Whenever a boolean isBound event is received then a SFNode nodeBound event is sent.

This is typically hooked up as in the following example

DEF PZ PrivateZone { ... }

DEF NI NavigationInfo {}

DEF BF BinderFinder {

 node USE NI

 ROUTE NI.isBound TO BF.isBound

 ROUTE BF.nodeBound TO PZ.navigationInfo

}

[Top]

[image: image18.png]

BooleanSwitch

EXTERNPROTO BooleanSwitch [

 eventIn SFBool in

 field MFNode trueChildren []

 field MFNode falseChildren []

] "urn:inet:livingworlds.com:proto/BooleanSwitch"
BooleanSwitch is a simple node that behaves like a Switch except that it takes two MFNode fields as the list of false and true children, and a boolean event to switch between them.

[Top]

[image: image20.png]

CheckCombination

EXTERNPROTO CheckCombination [

 exposedField MFNode checkA

 exposedField MFNode checkB

] "urn:inet:livingworlds.com:proto/CheckCombination"
This node is only found in the conditions field of a Behavior node, or inside another CheckCombination node.

It specifies that either all the conditions in checkA or all thos in checkB must pass in order for this node to pass. This combination check node is actually a combination of AND and OR functions: There is an implicit OR in testing checkA and checkB (i.e., checkA-test OR checkB-test). Further, all elements in checkA and checkB are AND-ed. Thus the check can represent many combinations:

X | Y (checkA = X, checkB = Y)

X * Y (checkA = X Y, checkB = NIL)

(X * Y) | Z (checkA = X Y, checkB = Z)
See the Architecture: Condition Checking for more information on how this works.

[Top]

[image: image22.png]

CheckCertificate

EXTERNPROTO CheckCertificate [

 exposedField SFString certificateAuthority ""

 exposedField SFString certificateId ""

] "urn:inet:livingworlds.com:proto/CheckCertificate"
This Check node specifies a certificate that must be held by the sending SharedObject for this check to pass, The method for checking the certificate is outside the scope of the standard, but typically the MUtech checks with the certificateAuthority by decrypting the certificate of the user, which is in the original message.

This node only occurs in the conditions field of a Behavior node, or in a CheckCombination node.

See the Architecture: Condition Checking for more information on how this works.

[Top]

[image: image24.png]

CheckServer

EXTERNPROTO CheckServer [

 exposedField MFString server ""

 exposedField MFString role ""

] "urn:inet:livingworlds.com:proto/CheckServer"
This check specifies that the MUtech should check with the server specified, that the user satisfies the Role specified. The details of this check are outside the scope of this standard.

This node only occurs in the conditions field of a Behavior node, or in a CheckCombination node.

See the Architecture: Condition Checking for more information on how this works.

[Top]

[image: image26.png]

[image: image27.png]

 CooperativeLock

EXTERNPROTO CooperativeLock [

 eventIn SFBool lock

 exposedField SFInt identifier

 exposedField SFBool hasLock

 field SFNode privateSharedObject

] "urn:inet:livingworlds.com:proto/CooperativeLock"

The CooperativeLock node, provides a facility similar to Unix's "mutex". These are co-operative locks that may be used by behaviors to synchronise. A MUtech is expected to provide functionality to allow these locks to be synchronised, but does not itself pay attention to the state of the CooperativeLocks.

When a TRUElock eventIn is received, the CooperativeLock sends a SFNode event with a pointer to itself to its sharedObject, when the lock succeeds the MUtechSharedObject will send a TRUE event to the hasLock eventIn.

When a FALSE lock eventIn is received, the CooperativeLock sets hasLock to FALSE and sends a SFNode event with a pointer to itself to its sharedObject.'s lockCooperative eventIn.

See Architecture: Locking for more details on how this works.

[Top]

[image: image28.png]

[image: image29.png]

 File

EXTERNPROTO File [

 exposedField MFString url []

 exposedField SFNode attributes NULL

] "urn:inet:livingworlds.com:proto/Message"

The File node encapsulates information about a file. See the Message node for a specific case of its use.

The url field refers to one or more locations where the file may be found.

The attributes field can be used to hold other information about the file, if non NULL it should contain an AssociativeStringArray, where the tags and corresponding values are as defined in the "Header Field Definitions" section of the HTTP1.1 spec. In particular this field may contain a tag "Content-Type" along with a value being the Mime type of the file.

[image: image30.png]

[image: image31.png]

 Message

EXTERNPROTO Message [

 field SFNode toAddress NULL

 field SFNode fromAddress NULL

 field MFString what ""

 field MFString signature ""

 field MFString stringParams []

 field MFFloat floatParams []

 field MFNode nodeParams []

] "urn:inet:livingworlds.com:proto/Message"
Message is a node that is sent to certain message handlers as an SFNode parameter, it is only used to encapsulate data and never exists in the scene graph, and so has no relationship to a coordinate system. It is not normally authored, usually being generated at run time by Script nodes. This node was designed to work around restrictions in VRML2.0's event passing model that do not allow the receiver of an event to know where the event came from, or to receive multiple parameters.

The toAddress field is the SFNode pointer where the method is being sent, it is used to indicate the destination SharedObject when the eventIn where this node is sent is not the eventual destination of the message, but is, for example, a MUtechSharedObject which will be forwarding the Message across the network,

The fromAddress field is used to indicate the MessageHandler or SharedObject that should receive any reply. Typically this field will be left NULL, and filled in by whatever forwards this node somewhere.

The what event specifies what event is being sent, this is what a MessageHandler will dispatch on.

The signature field is filled in by the PrivateSharedObject when it signAndForward's this Message to the toAddress.

The stringParams, floatParams and nodeParams fields are parameters sent with the Message, their contents are opaque to anything except to a Script which understands the Message designated by the what field. A MUtech that must transfer the node is expected to look inside the nodeParams field to determine how to create an equivalent Message at the destination system. To facilitate MUtech transfer, the nodeParams field may only contain AssociativeStringArray, SharedObject and File nodes. For each of the File nodes that point to local url's the MUtech should copy or otherwise make available the file at the destination machine, and may in the process change the url field of the File node to point to either a local or server based copy of the file.

[image: image32.png]

[image: image33.png]

MessageHandler

EXTERNPROTO MessageHandler [

 eventIn MFString message

 exposedField SFString messageNames []

 exposedField MFNode messageScripts []

 exposedField MFNode defaultMessageScript

 eventOut MFNode conditionChecker

] "urn:inet:livingworlds.com:proto/MessageHandler"
See Author: Behavior for how the MessageHandler node is used in conjunction with the Behavior node, condition checkers, and MUtechSharedObject.

MessageHandler is a script that dispatches a message represented as a Message node to the message eventIn of one of the nodes specified in messageScripts.

To dispatch, the what field of the Message is compared against the messageNames field. A match occurs at the first element of messageNames that contains a string which is an initial sub-string of the what field of the Message. So for example if messageNames contains ["dance/makarena","dance"] then a what field of "dance/makarena" will match the first entry and "dance/waltz" would match the second. If a match occurs the Message node is sent to the message eventIn of the Script in the corresponding element of the messageScript field. If no match occurs, then the Message is sent to the message eventIn of the node pointed to be the defaultMessageScript field if present. The messageScripts and messageNames fields must have the same number of elements or behavior is undefined. The Script that the Message is dispatched to is reponsible for deleting the Message after processing, if the Message is not passed on because there is neither a match nor a defaultMessageScript then the Message node should be deleted.

If the node to be dispatched to is a Behavior node, then a MFNode eventOut is sent on the conditionChecker eventOut with the 0th element set to the Message, and the 1st element set to the Behavior node.

It should be noted that both the messageScripts and defaultMessageScript fields may contain MessageHandler nodes allowing arbitrary trees of MessageHandlers to be built. For example:

MessageHandler {

 messageNames ["dance", "greet"]

 messageScripts [

 MessageHandler {

 messageNames ["dance/makarena", "dance/waltz"]

 messageScripts [

 Script { ... makarena ...}

 Script { ... waltz ...}

]

 }

 MessageHandler {

 messageNames ["greet/hug", "greet/tickle"]

 messageScripts [

 Script { ... hug ...}

 Script { ... giggle ...}

]

 }

]

}

[image: image35.png]

Selector

EXTERNPROTO Selector [

 exposedField MFNode selectorItems []

 exposedField SFBool enabled FALSE

 field SFBool isTearOff FALSE

 eventIn MFNode addItems

 eventIn MFNode removeItems

] "urn:inet:livingworlds.com:proto/Selector"

There are a number of UI functions that VRML should allow to specify in a browser-independent manner, i.e. so that the UI will be displayed to the user in a browser-dependent manner. The Selector node is a first cut at providing generic UI functions as required for Living Worlds. Currently a browser running as a plugin could display Selectors as popup menus. What paradigm the browser uses for displaying the Selector, e.g. 2-D or 3-D, is completely up to the browser.

The selectorItems contain a list of items to present in a user interface. The nodes can be either Selector or SelectorItem nodes. Empty items in the selectorItems field could be used as separators between items.

The addItems and removeItems eventIn's can be used to add and remove SelectorItem or Selector nodes from the selectorItems field.

If the enabled exposedField is TRUE, the Selector is enabled and displayed. The browser should display the selectorItems in a browser-specific way, and then use the result of the user's selection to dispatch a Message to the appropriate Script node with the what field set to the messageName from the SelectorItem selected.

The isTearOff field is set to TRUE if the Selector should be torn off. The Selector should remain on the screen, e.g. if the mouse is released.

The enabled field should be set to FALSE whenever a SelectorItem is selected and isTearOff is FALSE.

The "isActive" field of a TouchSensor might be routed to the set_enabled eventIn.

It should be noted that the Selector specifies a generic User Interface, and that browsers may implement this in any way that is consistent with their user interface.

[image: image37.png]

SelectorItem

EXTERNPROTO SelectorItem [

 exposedField SFString label ""

 exposedField SFBool enabled TRUE

 exposedField SFBool isCheckBox FALSE

 exposedField SFBool isChecked FALSE

 eventIn SFNode message

 field SFString messageName ""

 field SFNode messageScript NULL

] "urn:inet:livingworlds.com:proto/SelectorItem"
The label is the name that should be represented at the user interface.

If enabled is FALSE, the SelectorItem can't be selected. (This is similar to a grayed menu item.)

The isCheckBox field is set to TRUE if the item should be treated as a check box. IsChecked will change its value whenever the item is selected. In this case the event is sent to the appropriate script with floatParams[0] set to "1" for checked, and "0" for unchecked. The isChecked field is unused if isCheckBox is FALSE.

SelectorItems are displayed to the user by way of inclusion in a Selector. Whenever the SelectorItem is selected the Selector will dispatch a message, represented by a Message node to the SFNode eventIn message. The SelectorItem will fill in the what field of the Message with the messageName and then dispatch this Message to the message field of the node pointed to by the messageScript field. The parameters fields of the Message will be cleared, except that if the isCheckBox is TRUE then the floatParams[0] field of the Message will be set to either 1 if isChecked is TRUE, or 0 otherwise. TheScript handling the Message is responsible for deleting the Message node after processing.

[image: image39.png]

SmoothMover

PROTO SmoothMover [

 eventIn SFVec3f toPosition

 eventIn SFRotation toOrientation

 eventIn SFTime toTime

 eventOut SFVec3f position

 eventOut SFRotation orientation

] "urn:inet:livingworlds.com:proto/SmoothMover"
The SmoothMover node is a default interpolator to move a Drone from one position to another, typically a Drone without clever animation will attach a SmoothMover node to do smooth interpolation.

When eventIn's are received on toPosition, toOrientation, and toTime, then the SmoothMover should vary position and orientation to reach the specified position and orientation at the specified time.

See Architecture: Event flow for Motion for more details of how this fits in.

Converter Functions

Since the AssociativeStringArray plays such a central role in the communication of state, it is useful to have a library of functions for setting and extracting the values of this "communications container." Here is one example of such a functional pair:

[image: image41.png]

SFColorToASA

PROTO SFBoolToASA [

 eventIn SFBool input

 field SFString tag ""

 eventOut MFString output

] "urn:inet:livingworlds.com:proto/SFBoolToASA"
The SFBoolToASA provides a convenient way to set values in an AssociativeStringArray.

Whenever an eventIn is received on input it will be converted to a string, and combined with the string from the tag field, and an MFString event sent on output such that output[0] is the tag and output[1] is the converted value of input.

The exact details of the conversion is TBD, but it will be the inverse of the transform specified in the ASAToSFBool node. A potentially suitable candidate for the transform is that used to convert from the SFColor in the binary format.

ASAToSFColor

PROTO SFBoolToASA [

 eventIn MFString input

 field SFString tag ""

 eventOut SFColor output

] "urn:inet:livingworlds.com:proto/ASAToSFColor"
ASAToSFColor is usually ROUTEd from an AssociativeStringArray's out field. Whenever a input eventIn is received which has the first element matching the tag field, then the string in the second element is converted to a SFColor and an output eventOut is sent.

The same descriptions apply to the complete set of converter functions:

	SFBoolToASA
MFColorToASA
SFFloatToASA
MFFloatToASA
SFImageToASA
SFInt32ToASA
MFInt32ToASA
SFRotationToASA
MFRotationToASA
SFStringToASA
MFStringToASA
SFTimeToASA
SFVec2fToASA
MFVec2fToASA
SFVec3fToASA
MFVec3fToASA
	ASAToSFBool
ASAToMFColor
ASAToSFFloat
ASATOMFFloat
ASAToSFImage
ASAToSFInt32
ASAToMFInt32
ASAToSFRotation
ASAToMFRotation
ASAToSFString
ASAToMFString
ASAToSFTime
ASAToSFVec3f
ASAToMFVec2f
ASAToSFVec3f
ASAToMFVec3f

The precise description of all these conversions is TBD, in particular do not rely on the conversion of a number to be an Ascii string of the number, it is more likely to be a compact binary representation. Note that it shouldn't matter what the conversions are, since they are usually only passed between different instances of the same object, and as long as SFBoolToASA is an inverse of ASAToSFBool then everything will work fine.

Security model

VRML2.0's security model is based on three concepts

1. Anything defined inside a PROTO is hidden from outside the PROTO unless explicitly exposed in the PROTO definition.

2. If you can't get a pointer to something you can't modify it.

3. Even if you have a pointer, you can't modify a field unless it has an eventIn or is exposedField, and can't read something that is not an exposedField and doesn't have an eventOut .

Unfortunately ?. While PROTO's can be used for defining the nodes above, it is very convoluted to hide the fields of a SharedObject etc. from the rest of the scene while allowing the fields to be available to the MUtechSharedObject and to the components of the object as defined beneath the visualDefinition field.

Our solution is to use exposedFields and restrict the ways in which pointers can be passed around. Specifically:

· The pointer to a PrivateSharedObject or PrivatePilot should never be available to any other SharedObject written by someone else, instead just the SharedObject is made available.

The rational behind some of the choices of whether something is an exposedField or not is documented here, this section is purely to save time in eliminating some of the obvious alternatives during the standardization process.

	Zone
	
	Pointer kept private

	getChildren

addChildren, removeChildren
	eventOut

eventIn
	addChildren and removeChildren are events that are used by the scene to add objects, getChildren can be used to get a list of objects in the Zone.

	PrivateZone
	
	Pointer kept private

	avatarPosition, avatarOrientation
	exposedField
	need to be available for routing to PrivateSharedObject, this means anything getting pointer to PrivateZone can move the avatar around.

	avatar
	eventIn
	needs to be available to MUtechZone to set the Avatar.

	children

addChildren, removeChildren
	exposedField

eventIn
	needs to be available to MUtechZone to control visible avatars

	isActive, bboxSize, bboxCenter,
	exposedField
	needs to be available to be read by the scene (e.g VisibilitySensors) for culling, and available to MUtechZone. TBD which parts of this are needed?

	isVisible
	field
	Only used by the PROTO.

	whichTechnology
	exposedField
	needs to be readable to parts of PrivateSharedObject, and writable by MUtech

	navigationInfo
	exposedField
	needs to be readable to parts of PrivateSharedObject, and writable by BinderFinder in scene.

	MUtech, navigationInfo, zoneCapabilities
	field or eventIn
	Don't appear to be required to be readable.

	SharedObject
	
	Pointer public

	publicMessage
	eventIn
	So other SO's can send messages to this object.

	private
	exposedField
	points to PrivateSharedObject during adding of Object, but then set to NULL after giving pointers to MUtechSharedObject before object is added to Zone so that nothing else can access PrivateSharedObject

	certificates
	exposedField
	must be readable by many things, especially used to check signature of Messages.

	PrivateSharedObject
	
	Pointer kept private

	isPilot
	exposedField
	visible by Private, - and/or rest of object, settable by MutechSharedObject

	muTech
	exposedField
	rest of object must be able to read it to find MutechSharedObject, settable by MutechZone

	nickName
	exposedField
	settable by behavior in object, readable by MutechSharedObject

	visualDefinition
	field
	Doesn't appear to be needed outside PrivateSharedObject

	selector,pilotSelector
	exposedField
	accessable to MUtechSharedObject to add TouchSensor to Selector pointed to here.

	publicMessages, privateMessages
	exposedField
	So MUtechSharedObject can find MessageHandler and edit during Capability Initialization

	currentState
	exposedField
	So MUtechSharedObject can change state, and rest of object can see state. (Note rest of object could route from ASA directly, and MUtechSharedObject could have pointer directly to ASA)

	toPosition,toOrientation,toTime
	exposedField
	receive events from MUtechSharedObject, read by interpolator (e.g. SmoothMover)

	position,orientation
	exposedField
	receive events from interpolator. Routed to Transform.

	isVisible
	exposedField
	set by MUtech, readable by BooleanSwitch and parts of object

	url
	exposedField
	readable on pilot so MUtechSharedObject can create copy on drone.

	isActive
	exposedField
	setable by behaviors, readable by MUtechSharedObject to control network culling

	bboxCenter, bboxSize, scaleable, scale
	exposedField
	readable/settable by script managing Zone when adding object, settable by behaviors if object changes size.

	reliableMotion, persistent, isAvatar
	exposedField
	readable by MUtechSharedObject to control networking

	zone
	exposedField
	points to Zone so that parts of object can locate other SharedObjects in the same Zone.

	persistentPilot
	exposedField
	must be readable by MUtechSharedObject

	Selector
	
	Pointer kept private

	selectorItems

addItems, removeItems
	exposedField

eventIn
	need to be available for Capability Initialization, this means anything getting pointer to Selector can modify behavior

	enabled
	exposedField
	so that can be activated by TouchSensor.

	isTearOff
	field
	internal

	SelectorItem
	
	Pointer private, only with Selector, but not dangerous

	label; isCheckBox; isChecked
	exposedField
	need to be readable by Selector, no danger, could be eventOut+field.

	enabled
	exposedField
	needs to be readable by Selector and potentially modifiable by a behavior to disable. No danger.

	messageName, messageScript
	field
	Must not be modifiable, or pointer to SelectorItem could be used to change behavior.

	MessageHandler
	
	Pointer public to anything which can send messages here.

	message
	eventIn
	Messages are sent here for processing

	messageNames, messageScripts, defaultMessageScript
	exposedField
	exposed so that they can be modified during Capability Initialization, TBD, a bad idea since pointer is public.

	
	
	

The nodes ASAToAnything, AnythingToASA, SmoothMover are considered internal, i.e. if pointers to them should be kept internal to an object, or the world, because to expose them would allow something else to edit some graph, however none of these nodes have dangers (such as pointers to other nodes) such that exposing a pointer to them, or a ROUTE to them allows access to something else.

· TBD

